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We present a reduced-order modelling technique for analyzing the unsteady sub-
sonic aerodynamic flow about isolated airfoils. To start, we model the flow using the
time-linearized full potential equation. The linearized potential equationis discretized
on a computational mesh composed of quadrilateral elements using a variational fi-
nite element technique. The resulting discretized equations are linear in the unknown
potential, but quadratic in the reduced frequency of vibration. We compute the domi-
nant (low frequency) eigenfrequencies and mode shapes of the unsteady fluid motion
using a nonsymmetric Lanczos algorithm, and then we use these eigenmodes to con-
struct a low degree-of-freedom reduced-order model of the unsteady flow field. A
static correction technique is used to account for the high-frequency eigenmodes not
retained in the model. We show that the unsteady flow can be modelled accurately
using a relatively small number of eigenmodes, 1998 Academic Press

1. INTRODUCTION

In this paper, we present a new approach for computing unsteady flows about iso
airfoils. In particular, we first compute the dominant natural frequencies (eigenvalues)
mode shapes (eigenmodes) of unsteady fluid motion about the airfoil. Then, using a <
number of these natural modes, we assemble a “reduced-order model” of the unsteady
field.

Until recently, most unsteady aerodynamic analyses of unsteady flows about wings
airfoils have been one of two types: time domain or frequency domain. In the time-dorn
approach (see, e.g., [1-6]), one discretizes the fluid equations of motion on a computat
grid surrounding the airfoil. The solution is then marched from one time level to the n
subject to appropriate unsteady boundary conditions, e.g. arising from the prescribed m
of the airfoil. The advantage of this approach is that it is relatively straightforward
implement and can model nonlinear as well as linear disturbances. However, because
need for such schemes to be both time accurate and stable, the size of the time ste
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generally be quite small, especially for explicit schemes. Furthermore, if the unsteady

must be calculated for a number of frequencies and mode shapes of airfoil vibration,

a separate time-domain analysis must be performed for each case leading to exces
large computational times.

The other widely used approach is the frequency domain or “time-linearized” techni
(see, e.g., [7-13]). Using this approach, one first computes the time-mean (steady)
about the airfoil by solving the steady flow equations using conventional computational f
dynamic (CFD) techniques. One then assumes that any unsteadiness in the flow is sme
harmonic. The governing fluid equations of motion and the associated boundary condi
are linearized about the mean flow solution to arrive at a set of linear variable coeffic
equations that describe the small disturbance flow. The resulting time-linearized equa
can be solved very efficiently. Nevertheless, as in the time-domain approach, a sep
analysis must be performed for each frequency and vibrational mode shape of interes

Both the time-domain and frequency domain analyses predict the unsteady flow
for a single prescribed unsteady condition. Thus, other than through extensive paran
studies, these models do not always provide insight into the physics of the unsteady
Furthermore, because of the form of these models and the large number of degre
freedom, the time-domain and frequency-domain models are not well suited for applicat
involving active control. To reduce the number of degrees of freedom to a manageable |
a number of investigators have developed reduced order models based on curve-i
techniques (see [14-17]). Usually, the unsteady aerodynamic response (e.g., the un:
lift due to plunging motion) is fit to a sum of exponentials in time. This form of reduce
order model is especially convenient because the Laplace transform is simply a rati
polynomial in the Laplace plane. However, these curve-fit reduced-order models are
completely satisfactory because the time-domain or frequency-domain analyses on v
they are based must still be applied at a number of different frequencies. Furthermore,
models make no attempt to use information about the fluid eigenmodes, which presun
play an important role in the fluid motion.

In structural dynamic problems, the conventional approach to solving unsteady vibra
problems is to construct reduced-order models using the eigenmodes of the structu
basis functions. It seems plausible that some of the techniques developed for struc
dynamic problems could be applied to unsteady aerodynamic flows. In fact, modal ana
techniques have been applied to selected fluid flow problems, for example, boundary
stability and fluid slosh in tanks. However, only recently have investigators computed
natural frequencies and mode shapes of unsteady flows about airfoils.

Parker [18] has computed the natural frequencies of acoustic modes in a cascade ¢
plate airfoils operating at low Mach numbers. He found his predicted natural frequen
to be in good agreement with experimentally measured values. More recently, Rizzi
Eriksson [19] computed the smallest eigenvalues of a linearized unsteady two-dimens
Euler flow solver. In particular they studied the effect of the far-field boundary conditic
and artificial viscosity on the conditioning of the numerical integration scheme. Mahaj
Dowell, and Bliss [20, 21] have computed the eigenfrequencies of viscous flow over isol
airfoils modelled with a Navier—Stokes solver to better understand the role of artifi
viscosity. Mahajan, Dowell, and Bliss [22] have also computed the coupled fluid/struc
eigenvalues for the case of compressible flow over an elastic airfoil. The present au
have computed the natural frequencies and mode shapes of unsteady compressible ¢
flows [23] and incompressible unsteady flows about two-dimensional airfoils, casca
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and three-dimensional wings ([24]), and have used the resulting eigenvalues to cons
low degree-of-freedom reduced-order aerodynamic models. Romanowski and Dowell
have used the eigenmodes of a time-domain Euler code to form reduced-order mode
flows about isolated airfoils.

Another approach for constructing reduced-order models is based on proper orthog
decomposition. In this approach one computes the aeroelastic response due to a s
pitch, for example, as a function of time. Then, at several instants in time, one comp
the deviation of the unsteady flow field from the mean flow field producing an ensen
of flow field perturbations. The dominant eigenvectors of the autocovariance matrix bz
on this assemble are used to form a reduced-order aeroelastic model. Note that in bo
eigenmode-based and the proper orthogonal decomposition reduced order models, :
tively small dimension basis is extracted from an accurate representation of the unst
flow. The unsteady aerodynamic/aeroelastic equations are then projected onto the s
spaned by the basis. Romanowski [26] applied the proper orthogonal decomposition
nique to the unsteady aerodynamic flow around a subsonic isolated airfoil describe
the Euler equations. A review of this method is provided by Sirovich [27] and by Holm
Lumley, and Berkooz [28].

In this paper, we apply the concepts developed by Hall, Florea, and Lanzkron [23
model the unsteady subsonic compressible flow about an isolated airfoil. We show
the unsteady flow can be modelled accurately and efficiently using reduced-order mc
constructed using a small number of eigenmodes, provided that one or more so-called “
corrections” are applied to approximate the influence of the high-frequency eigenmc
not retained in the model. Work is underway to extend the method to transonic flow us
both the full potential equations and the Euler equations. Preliminary results show
no additional difficulties encountered in either the flow model linearization or the eigenve
calculations.

2. FLOW FIELD DESCRIPTION

2.1. Nonlinear Full Potential Flow Model

In this paper, we consider the unsteady subsonic flow about an isolated two-dimens
airfoil due to vibratory motion of the airfoil (the flutter problem). We assume that the flc
is isentropic and that any boundary layers are thin and attached. Under these circumste
the full potential equation provides a reasonably accurate description of the actual
field. The full potential equation is given by

R 2
Vi =5 at‘f +2V¢ - —¢+ SVé - (V)2 ()

whereé is the velocity potential and is the local speed of sound. The scalar velocit
potential is related to the fluid velocity b= V¢. The superscript “*” indicates that the
guantity is unsteady.

The unsteady static pressyiieand densityp ‘are related to the velocity potential by the
unsteady compressible Bernoulli equation,

9 y/(y=1)
[ (V¢)2+¢]} : (2

. Y
p—PT{l o

c?

wherePy is the total pressure; is the ratio of specific heats, ai@t is the total speed of
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FAR-FIELD BOUNDARY

MOVING AIRFOIL

FIG. 1. Domain for the solution of the steady and linearized unsteady full potential equations.

sound. Similarly, the unsteady density is given by

—17M1 . s N VoD
ﬁZPT{l—yC%{Z(fo’)Z"' B(tp]} , 3)
wherepr is the total density.

In addition to the governing field equation, boundary conditions are required to comp
the problem specification (see Fig. 1). The surface of the airfoil is impermeable. Theref
the airfoil boundary condition requires that the velocity of the fluid normal to the bound
be equal to the normal component of velocity of the airfoil itself. Hence, we may write

N |
Vo -A= i n, 4)
wheref (s, t) is the prescribed position of a poisbn the airfoil as a function of time, and
f is the unit normal to the airfoil surface pointing into the fluid.

The unsteady wake shed behind the airfoilis a sheet of vorticity in an otherwise irrotatic
flow field. In the present work, we model the vortex sheet as a massless imperme
membrane. Because the membrane is impermeable, the boundary condition given |
also applies on either side of the wake. However, now the posit®mn) of a points on the
wake as a function of time is not knovenpriori but, instead, must be found as part of th
solution. In addition, since the membrane is massless, it cannot support a pressure
Therefore, we require that

[p] =0, (6)

where[ f] is the pressure jump across the wake. Finally, the Kutta condition is applied
requiring that the wake remain attached to the trailing edge of the the airfoil.

In addition to the near-field boundary conditions, far-field boundary conditions must
applied to ensure that the mean flow velocity approaches the freestream velocity at inf
and that unsteady disturbances radiate away from the airfoil.

2.2. Flow Decomposition

For many aeroelastic and aeroacoustic flows of practical interest, the unsteadine
small compared to the mean flow. For example, at the onset of flutter, the vibration of
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airfoil is small and so is the resulting unsteady flow. Therefore, the unsteady full poter
equation may be linearized to obtain a linear variable coefficient equation for the si
unsteady disturbance flow.

For numerical accuracy, it will be convenient to work in a coordinate system that confo
to the motion of the airfoil. Consider the case where the airfoil vibrates harmonically w
frequencyw. The usual physical coordinatesy, t are related to the “strained coordinates’
&, n, T by the transformation

X(&,n,7) =&+ f(& ne" (6)
Y&, 0, T) = n+gE, ne” @)
tE, n 1) =t €)

Here, the physical and strained coordinate system are the same to zeroth order, but
from first order in the small perturbation functiorisandg. The functionsf andg are
chosen so that in the strained coordinate system the airfoil appears stationary. Said ar
way, if the nodes of a computational grid are fixed in the strained coordinate system, the
the physical coordinate system, the grid nodes will deform so as to conform to the mo
of the airfoil.

Having defined the coordinate transformation, we now decompose the unsteady vel
potential ¢ into the sum of two parts: a mean or steady potentiahnd an unsteady
disturbance potentia, i.e.,

GE, 0, 1) = PE, n) + P E, e, ©)

where the unsteady potentiais assumed to be much smaller than the mean flow potent
®. Note that the perturbation series is carried out in the strained coordinate system. Thu
the physical coordinate system, unsteadiness will arise from the unsteady velocity pote
¢ and the unsteady deformation of the mean velocity potedtial

At first, defining the potential decomposition in the strained coordinate system wo
seem to complicate unnecessarily the solution of the unsteady flow field. However, the
of strained coordinates eliminates the need to extrapolate the unsteady boundary conc
from the instantaneous position of the airfoil to the mean position of the airfoil as requi
in fixed grid calculations. These extrapolation terms contain second derivatives of the n
flow potential and are very difficult to evaluate accurately in a numerical scheme, espec
near the leading and trailing edges. Furthermore, the use of strained coordinates is |
ically appealing since, to zeroth order, one would expect that the flow around a disple
airfoil would be the same as the steady flow, but displaced to coincide with the new pos
of the airfoil. Hall [8] and Hall and Clark [9] have shown that the use of strained coordina
greatly improves the accuracy of time-linearized unsteady flow computations.

Having defined the strained coordinates and the flow decomposition, we now nee
define the differential operatol® andd/at in terms of the strained coordinates. To firs
order, these may be expressed as

| ¥

9 KA

_fn 1_gn
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and

0 0 of
— = - —.V/ (12)
ot ot ot

wheref = (f, g)T. Next, we substitute Egs. (6)—(11) into the nonlinear full potential equ
tion and associated near-field and far-field boundary conditions. Collecting terms of ze
and first order inp andf gives the mean flow full potential and the time-linearized ful
potential equations, respectively.

2.3. Nonlinear Mean Flow Description

Retaining zeroth-order terms in the full potential equation gives the mean full poter
equation

V' . (RV'®) =0, (12)

whereR is the mean flow static density given by

y — , (-1
R= 1- Vo 13
1= ved] (13)
Equation (13) is recognized as the steady continuity equation.
Similarly, the mean flow airfoil boundary condition is given by
ad
-~ 14
an (14)

On the wake, (14) applies as well, along with the requirement that the mean pressure
across the wake be zero,

[PI=0, (15)
where the mean pressukeis given by
/(r=1
Y — 1 /N2 v
P= 1-—Vo 16
Pr| = ] (16)

Finally, at the far-field boundary, we require the mass flux through the boundary to be e
to the mass flux produced by the freestream. Therefore, we apply the Neumann cond

=V on, 17)

whereV , is the freestream velocity, amdis the unit normal to the far-field boundary.

This completes the specification of the mean flow field. Note that the problem is nonlir
in the unknown potentiab. In practice, the nonlinear problem may be reduced to a seque
of linear problems using Newton iteration.

2.4. Small Disturbance Unsteady flow Description

Having described the mean flow field, we now turn our attention to the specificat
of the small disturbance unsteady flow field. The first-order terms in the series expan
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of the full potential equation, (1), gives the governing equation for the unknown unste
perturbation potentiap, i.e.

’ / ’ R FARv H ’ R . ' AT o/ 2
V' .RV¢ -V ﬁ(qu Vo + jowp)V'® —E(ja)V@ V¢ — w¢)
= -V . [RAV® + V- fV®)] + jof - VR
’ R /1 'R T I/ ’ : ’ / ’
+V. & §V® JV'OV'D — joV'-fV' OV'D

+ g [%"v/qﬁv’@ + o?f -V/CD} , (18)
whereJ is the first-order partal™J — | andC is local mean flow speed of sound. In (18),
we have grouped the terms involving the unknown perturbation potentialthe left, and
the terms involving the prescribed deformation of the physical coordinates on the ri
Note that the linearized full potential equation, (18), is linear in the unknown perturbat
potentialg, with variable coefficients that depend upon the mean flow. The right-hand s
represents an inhomogeneous forcing term that arises from the motion of the airfoil {
hence unsteady coordinate straining).

Similarly, we find that the linearized boundary conditions on the airfoil surface are gi\

by
— =jof-n=JVa.n, (19)

wheren is the unit normal to the mean location of the airfoil surface. The first term
the right-hand side of (19) represents the upwash due to the local airfoil velocity norm:
the mean position of the airfoil surface. The second term represents an additional up
required to counteract a downwash resulting from shearing of the mean potential field
the airfoil due to the strained coordinate transformation. Finally, the usual upwash du
rotation of the airfoil does not appear, nor is it required, since the mean potential fiel
the vicinity of the airfoil rotates with the airfoil.
On the wake, a no-through-flow condition similar to (19) holds, i.e.,
d¢

— =jof -N=JV®-N+ jor, +V

ory,
an ’

3s (20)

wherer , is the displacement of the wake normal to its mean position. Note, however,
two additional terms that appear on the right-hand side of (20). These terms appear be
motion of the wake, which is not knovanpriori, does not exactly coincide with the motion
of the physical coordinates y, t corresponding to the mean wake locatio§ i, T space.

These two terms represent an additional wash due to the translation and rotation of the \
respectively. Also, the jumpin the perturbation pressure across the wake mustbe zero, s

[p] =0, (21)

wherep is the perturbation pressure.

Finally, boundary conditions must be applied on the far-field boundary to ensure
unsteady disturbances propagate away from the airfoil. We apply boundary condit
similar to those proposed by Bayliss and Turkel [29]. In the far field, the mean flow
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uniform and the linearized potential equations may be expressed as

2 2
—a)2¢+2jwuoo8—¢ —(cZ U2)8_</> — cgoa—¢ =
0§ &2 an?
where for simplicity we have assumed that the physical and strained coordinate sys
coincide in the far field and that the freestream flow is in 4hdirection. HereU,, and
C. are the freestream flow velocity and speed of sound. For subsonic flows, Bayliss
Turkel [29] have shown that an approximate but accurate radiation boundary conditior
the convective wave equation, (22), is given by

o0 (o]

0, (22)

. R o 5 . R o 1
where
R= (& +1)"2,
1/2
(¢ 2
d—<1_M§O+n ;
and

_ 21-1/2
Ci = w [1_

X_ Mo
Cwo '

d(1-m2)"

Grouping terms in (23) by powers afgives

1 9%¢ 9 ¢ . 2Ci( _03¢
Bop = = RP—= +3R—— + = = (RrR—=Z —w?C32¢=0. (24
20 d2< are 8R+2>+]wd ( 8R+¢> 0"C1d (24)
We have found that for moderate to high reduced frequencies, these boundary cond
are highly nonreflective. However, in the limit of zero reduced frequency, (24) reduces

Bz¢=0=i<R2—+3R—+—>. (25)

The third term on the right-hand side is inconsistent with the linearization of the mean f
far-field boundary condition. For instance, at very low reduced frequencies, the unsti
lift due to a pitching motion of the airfoil with unit amplitude should be equal to the li
curve slope. However, if the tergy 2d? is retained in the far-field boundary condition, the
correct lift is not obtained. Therefore, (24) is used at the far-field boundary, but with
term¢/2d? omitted. We have found that this modification greatly improves the very lo
frequency calculations and does not significantly alter the moderate and high-frequ
behavior.

This completes the specification of the small disturbance unsteady flow problem. C
this linear boundary value problem has been solved, the unsteady perturbation pressi
the surface of the airfoil may be found using the linearized Bernoulli equation,

1 ~
p=—-R|VO V¢ + jwp— jof - Vd+ év’<1>TJv’<1> ) (26)

The unsteady pressure can then be integrated to find the unsteady lift and moment.
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2.5. Discretization of the Governing Equations

Solving for the unsteady perturbation flow is a two-step process. First, the equat
governing the nonlinear mean flow field are discretized on a computational grid and so
numerically. Then, the mean flow solution is used to form the variable coefficients appea
in the small disturbance equations, which are also solved numerically for each vibra
mode and frequency of interest.

Hall [8] has shown that both the mean flow and linearized unsteady potential equation
the Euler—Lagrange equations of variational principles that are extensions of a variati
principle given by Bateman [30]. Furthermore, the mean flow and linearized unsteady
foil boundary conditions are identical to the natural boundary conditions of the variatic
principles. Therefore, in the present work, we discretize the field equations and the ai
boundary conditions using variational finite elements. The elements are four-node isof
metric elements. The far-field boundary conditions and the wake boundary conditions
discretized using a combination of finite element and finite difference techniques.

The discretized equations for the mean flow (12) are nonlinear and are solved u
Newton iteration. The discretized equations governing the unsteady perturbation flow
are, of course, linear and of the form

A = b, 27)

whereg is the vector containing the unknown values of velocity poteutiat each of the
grid nodes and the unknown wake motignat each node along the wake. The maix
is a large, sparse, complex, nonsymmetric matrix. The vdxtoises from the prescribed
motion of the airfoil (and, hence, the physical coordinate system). Using the conventic
“direct” time-linearized solution technique, one would solve (27) by Gaussian eliminat
or LU decomposition for each frequency and mode shape of vibration. In Section 3,
describe an alternative modal analysis technique based on the eigenmodes of the
dynamic system.

3. REDUCED-ORDER MODELLING TECHNIQUE

3.1. Normal Mode Analysis

Consider the assembled matrix equation for the unsteady small disturbance flow, |
Every term in the matridA is quadratic in the frequeney so that

(Ao + joAr + w?A2) ¢ = b, (28)

where the matrice&, A1, andA; are real nonsymmetrit x n matrices and wheneis the
number of unknown entries . (We remark, however, that without the wake and far-fiel
boundary conditions, the matricAg andA, would be symmetric and the matuy would

be skew symmetric.) The form of discretized equations is similar in form to that obtair
for linear structural dynamic problems. As in structural dynamics, it will prove useful
solve (28) using a normal mode analysis. Toward that end, it will be convenient to con
(28) to first-order form. Lef® be the “state” of the system defined by

P = {j‘f}. (29)
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Equation (28) may then be expressed as
A® — jwB® = b, (30)

where

G O 0 G — 0
AZ[Al AJ’ BZ{AZ 0]’ bz{b}’

and whereG is any nonsingular matrix.
Next, we seek to diagonalise (30). Therefore, we need to compute the left and |
eigenvectors of the generalized eigenvalue problem

Ax = 2 Bx, (31)
where); istheith eigenvalue and is the corresponding right eigenvector. (For convenienc

we order the eigenvalues from smallest to largest in magnitude.) More generally, we
write

AX = BXA, (32)
whereX is a Zh x 2n matrix whosei-th column is the eigenvector correspondingito
and A is a diagonal matrix whosih diagonal entry is the eigenvalug. Similarly, the
generalized left eigenvector problem may be written as

ATY = BTYA, (33)
whereY is a square matrix containing the &ft eigenvectory;. The left and right eigen-
vectors are orthogonal with respect to the matridend3; we normalize the eigenvectors
so that they are orthonormal with respectoT herefore,

Y'BX =1 (34)
and

YTAX = A. (35)
3.2. Standard Reduced-Order Model

Next, we let the state vectdr be a linear combination of the right eigenvectors, i.e.,
PeloT = XweleT, (36)
wherew is the vector of modal coordinates and where we have temporarily reintrodu
el“T to emphasize that we seek the unsteady response to harmonic forcing. Substituti

(36) into (30) gives

AXW — joBXw = b. (37)
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Premultiplying (37) by T and making use of the orthogonality conditions, (34) and (35
gives

Awp — jow; =&, 1 =1,2n (38)

wheres; is the participation factor given by =y -b. Note that (38) represents a set o
uncoupled equations for the unknown modal coordinatesThe amount of each mode
present in the solution may be computed independently; the contribution of each mode
then be summed to determide so that

2n

2n
Si
@:Zwixizz)\i_liji. (39)
i=1

i=1

Note that the amount of each mode present in the solution is just the participation fa
i divided by the difference between the eigenvalyeand the forcing frequencyw.
Thus, modes with eigenfrequencies much larger than the forcing frequency are not strc
excited. Hence, as is commonly done in structural dynamic problems, we truncate the s
in (39) ati =m, wherem < 2n and|Am| > |w|.

3.3. Static Correction Technique

One finds that when using the standard reduced order model (mode superpositior
scribed in Section 3.2, an excessively large number of eigenmodes must sometime
retained to obtain accurate results. The problem is that while the dominant eigenm
have been retained, all of the eigenmodes participate in the response to some degree.
ever, if the frequency of the excitation is well separated from the eigenfrequency ¢
given mode, then that mode will respond in an essentially static way. This suggests the
unsteady solutio® may be divided into two parts, i.e.,

P =D+ P (40)

The first term on the right-hand side of (40) is the solution one would obtain if the excitat
were quasi-steady and is found by solving the linear system of equations

A® .= b. (41)

The second term on the right-hand side of (40) is a correction that accounts for the fac
those eigenmodes with small eigenfrequencies respond dynamically.
Next, we letd = XW. Substitution of this expression and (40) into (30), and again, maki
use of the orthogonality conditions, gives after some manipulation
2n

jo & 1
VY _I iji + Paic (42)
i=1

b =

The advantage of (42) over (39) is that the series in (42) converges more rapidly s
|jw/Ai| < 1 for largei. Thus, many fewer terms need to be retained in the series to obt
accurate results. This technique is completely analogous to the “static correction” or “nr
acceleration” methods used in structural dynamics problems (see, e.g. [31]).
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Another way to derive (42) is to note that

1 jo 1 1
== =, 43
Ai—jo kiki—1w+?»i (43)

Substitution of (43) into (39) gives

jo G 8i
_Z v +Z/\_ixi' (44)

The second series on the right is recognized as the static resp@ﬁgteThis process can
be repeated again so that

&= Z< .) '+ZJ‘“)\2X'+Z_X' (45)

The second term on the right is equak®), where® 2. is the solution to

static

2 1
A(I)ét;tlc = Bi’éte)mc (46)

Generalized for the case bk static corrections, we obtain

o= (3) %

X; + Z(Jw)k o (47)

where
k) k—1)
A(I)étatlc - B(I)étanc (48)

One might expect that the solution of the linear system of equations given in (48) would rr
the “method of multiple static corrections” prohibitively expensive. However, the mdtrix
need only be factored once using LU decomposition. Thereafter, back substitution is
to solve (48). Furthermore, the mattikis factored during the solution of the eigenvalue
problem and may be stored for this purpose. Note that the right-hand side of Eq. (28)
be written as a quadratic function of the frequency, that is,

b =bo + jwb; + w?by, (49)

where the vectorby, by, andb, do not depend on the frequency. Hence, for each type
external excitation (pitch, plunge, or a more general shape deformation), the multiple s
corrections can be computed with three back solves and the results used for any freq
of excitation. Note that the eigenvalues and eigenvectors do not depend on the ext
excitation.

Generally, the first series in (48) converges much more quickly than the standard red
order model series because for largéjw/Ai| < 1. Nevertheless, the method may brea
down if N¢ is too large. This is because the leading order terms in each of the two serie
(48) grow rapidly with increasingjl.. The sum of the two series, however, is order unity. |
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finite precision arithmetic, such operations can lead to significant roundoff errors. We f
found that good results are generally obtained for valuds.dfetween one and six.

For the reduced-order modelling techniques described above to be computationall
able, one must be able to calculate efficiently all of the eigenvalues and correspondin
and right eigenvectors for whicli;| < Aspecified Wherespecitiedis larger than the maxi-
mum frequency of interest. The authors have implemented a large, sparse, nonsymrr
guadratic, generalized eigenvalue solver based on the Lanczos algorithm with reorth
nalisation to solve the eigenvalue problem given by (33) and (34). The interested re
is referred to [32, 33] for a general discussion of the Lanczos algorithm, and to [23]
specific implementation details.

3.4. Aerodynamic Response to Arbitrary Airfoil Motion

In this section, we consider the aerodynamic response of an airfoil to arbitrary motio
the airfoil. In the time domain, the state vectb(t) is described by 2 first-order ordinary
differential equations of the form

Ad(t) — Bd(t) = b(t) (50)

Consider the case of airfoil which is initially at rest that begins to translate downward v
amplitudeh(t) at timet = 0. Taking the Laplace transform of (50) gives

A®*(s) — B®*(s) = h*(s)(do + sd1 + s°dy), (51)

where the superscript™” denotes that Laplace transform of the quantity in question. Tt
vectorsdy, di, andd, are constant vectors that depend on the type of airfoil motion. (Mo
precisely, the vectors depend on the details of the prescribed grid motion. For rigid-b
grid motion, the vectody is uniform, constant in space, and reduces to zero in the regi
where the grid pitches with the airfoil.)

Next, we represent the unsteady respobse as a sum of eigenmodes,

2n
(M) =) wib)x, (52)

i=1

where herew; () is the time history of the amplitude of th¢h eigenvector. Taking the
Laplace transform of (52) gives

2n
() = Y wi(S)xi. (53)
i=1
Premultiplying (53) bny-T, and making use of the orthogonality properties of the eigenve

tors, we find that

S0 + S81, + %82

wi'(s) = —h*(s) oy

: (54)

where, for exampleio; =Y/ - do. Finally, taking the inverse Laplace transform of (54), wi
find that

wi () = L7 w(9)]. (55)
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As an example, consider the case of an airfoil that is initially at rest that begins to tran:
with constant speeHi; at timet =0,

h(t) = Hit, t >0, (56)
“]o, t<o.

The Laplace transform df(t) is given by
h*(s) = Hy/s%. (57)

Substitution of (57) into (54) and (55) gives

Nt 1 514 2 (S0i  bui
) 1§KM+A$>Q.+M]. 1i=1<ki2+ i+z..) i (58)

The first series in (58) is just the “steady-state” response and can easily be shown
given by

Pss(t) = Hi A (dot + dy + BA™dy). (59)

Finally, the second series is truncatedrderms, wherem <« 2n, so that

B0 = Bss) — t 3 (5 + 2 ko ) (60)
i=1 N7 :

4. COMPUTATIONAL RESULTS

In this section, we use the techniques described in Sections 2 and 3 this paper to cor
the steady and unsteady subsonic flow about an isolated NACA 2410 four-digit airfoil.
computational grids used in all cases considered in this paper are O-grids (see Fig. 2)

Ty
uanaty
RS

LA
T
NS

FIG. 2. Typical O-grid used for the computation of flow about an isolated airfoil.
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Coefficient of Pressure, Cp
0.0

'0.0 0.2 04 0.6 0.8 1.0
Distance Along Chord, &/c

FIG. 3. Steady pressure on surface of NACA 2410 airfoil‘ aagle of attack and a freestream Mach numbe
M, of 0.5:0, 65x 32 node grid: , 65x 55 node grid.

different O-grids were used: a “small radius” grid with a radius of about 2.35 chords w
65 x 32 mesh points (65 nodes around the airfoil and 32 nodes in the radial direction),
a “large radius” grid with a radius of 6.0 chords with 55 mesh points. Note that the
inner portion of the large radius grid is identical to the small radius grid. The goal of us
computational grids with different radii is to demonstrate the effectiveness of the sect
order nonreflecting boundary conditions and to determine the influence of changing
size of the computational domain on the eigenfrequencies and eigenmodes of the uns
flow.

4.1. Steady Flow Analysis

To begin, we computed the steady flow about the NACA 2410 airfoil for the case wh
the freestream Mach numberMis 0.5 and the angle of attack is.2As shown in Fig. 3,
the steady flow is entirely subsonic for these conditions with a maximum Mach numbe
of about 0.72 on the suction surface. The results shown in Fig. 3 were computed using
different O-grids: the large radius grid (6555 nodes) and the small radius grid (632
nodes). The two calculations are in fairly good agreement indicating that, at least for ste
flow calculations, the small radius grid has a sufficiently large radius to prevent spuri
influences from the far-field boundary. Similar numerical experiments (not presented h
indicate that the resolution of the computational grids is such that the computed steady
results are essentially grid converged.

4.2. Direct Time-Linearized Unsteady Flow Analysis

Next, we consider the unsteady small disturbance flow about the NACA 2410 airfoil
the case where the airfoil vibrates in pitch about its midchord with pitching amplitude
The unsteady flow is computed using two complementary techniques. In this section
compute the unsteady flow using the more conventional direct time-linearized approac
Sections 4.2—-4.4 we analyze the unsteady flow using the reduced order modelling techn
described in Section 3.
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=
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FIG. 4. Unsteady pressure on surface of NACA 2410 airfoil pitching about its midchord with a reduc
frequencyw of 2.0: [0, 65 x 32 node grid: , 65x 55 node grid.

Consider the case where the airfoil vibrates in pitch about its midchord with a redu
frequency(w = wc/Uy,) of 2.0. Figure 4 shows the real and imaginary parts of the unstez
pressure distribution on the surface of the airfoil. These results were computed using
different O-grids (small and large radius grids). Note that the two computed soluti
are virtually indistinguishable, indicating that the nonreflecting boundary conditions all
outgoing pressure waves in the field and shed vorticity in the wake to pass througt
far-field boundary with very little reflection. If outgoing waves were reflected, then some
the reflected pressure waves would impinge on the airfoil surface and modify the pres
distribution. These reflected waves would have different phases for the two different g
and thus the solutions computed on the two different grids would differ one from the ot

Once the unsteady surface pressure has been computed, one can integrate it to obt
unsteady forces acting on the airfoil. Shown in Fig. 5 is the unsteady lift due to pitch
motion of the airfoil for a range of reduced frequencies. Note that the computed lif
insensitive to the location of the computational far-field boundary. We conclude the
computational grid with aradius of 2.35, along with the second-order nonreflecting boun
conditions described in Section 2.4, produce satisfactory computational results for unst
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Real Part

Unsteady Lift, L/(npUzca)
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Imaginary Part
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Reduced Frequency, wc/lJ

FIG. 5. Unsteady lift on NACA 2410 airfoil pitching about its midchordl: 65x 32 node grid:
65 x 55 node grid.

flows with reduced frequencies less than or equal to about 4.5. Similarly, numerical stu
show that the solutions are essentially grid converged for this range of reduced frequer
Note that at zero-reduced frequency, the unsteady lift is purely real as expected w
coefficient of lift C_, =1.28 x 2. The real part of the lift is slightly larger than the lift
curve slope of a flat-plate airfoil at a Mach number of 0 (=1.155x 2x) due to
thickness and steady loading effects (see, e.g. [34]).

4.3. Eigenvalues and Eigenmodes of the Unsteady Flow Field

Next, we computed the eigenfrequencies and eigenmodes of the unsteady flow abo
NACA 2410 airfoil. Shown in Fig. 6 are the computed eigenvalues of the flow for a fre
stream Mach number Mof 0.5 and an angle attack of for the two different computational
grids. In both cases, the eigenvalues are modally dense; that is, the eigenvalues tenc
very closely spaced, forming lines of eigenvalues that emanate from the origin. The aut
believe that these lines of eigenvalues correspond to discrete representations of brancl
The existence of branch cuts in aerodynamic response functions is well known and indit
that the impulse response contains nonexponential behavior. For example, Desmarai
has shown that that the Theodorsen function may be represented by a continued fre
approximation. The poles (eigenvalues) of the continued fraction lie along the negative
axis. As more and more terms are added to the continued fraction, the poles of the conti
fraction become more densely spaced. Hall [24] calculated the eigenvalues of a vortex I
model of unsteady incompressible flow and found that the line of eigenvalues represe!
the branch cut became more densely spaced as the length of the discrete representa
the wake trailing behind the airfoil was increased. Similarly, Fig. 6 shows that the lines
eigenvalues become more dense as the radius of the computational grid is increased.

By way of comparison, Fig. 7 shows the eigenvalues for the case where the flow abot
NACA 2410 airfoil is nearly incompressib{# ., = 0.05). Again we see that the eigenvalues
form dense lines (branch cuts) with branch points at the origin. Also, as before, the |
of eigenvalues become more dense as the radius of the computational domain is incre
although the location of the branch cuts change as the Mach number is changed.
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FIG. 8. Contours of unsteady pressure associated with four eigenmodes of flow about NACA 2410 ai
(65 x 32 node grid). Top to bottom: modei2& —0.2377+ 0i), mode 7§ = —1.6582+ 0.3930), mode 11{ =
—2.2705+1.3316), mode 15( = —1.1628+ 2.7910), mode 21 = —2.5529+ 2.5039). Left to right: real and
imaginary parts. Shading indicates negative values.

Returning to the M, = 0.5 case, Fig. 8 shows the contours of unsteady pressure ass
ated with several of the eigenmodes. Note that the pressure waves appear to pass out
domain without reflection. Shown in Fig. 9 are the pressure distributions on the surfac
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Mode 11
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FIG. 9. Unsteady pressure on surface of NACA 2410 airfoil associated with four different eigenmodes.
to bottom: mode 2, mode 7, mode 11, mode 15, mode 21. Left to right: real and imaginary parts.

the airfoil for each of the eigenmodes shown in Fig. 8. Strictly speaking, the eigenmode
modes ofpotential not pressure. The pressure distribution for a particular eigenmode \
found by applying the linearized unsteady Bernoulli equation (26) using the correspon
eigenfrequency of that mode. When the eigenmodes are used in the reduced-order 1
to compute the unsteady response at some other excitation frequency, the pressure di
tions associated with these eigenmodes will be different. In fact, the pressure distribt
associated with an individual mode at an arbitrary frequenajil generally not satisfy the
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Kutta condition. However, if the contributions from many eigenmodes are retained in
reduced-order model, then the reduced-order model will satisfy the Kutta condition, €
if the individual modes in the model do not.

4.4. Reduced-Order Model Analysis of Unsteady Flow

Having computed the dominant eigenvalues and eigenmodes of the unsteady flow
the NACA 2410 airfoil, we presently use that information to construct reduced-order m
els from which the unsteady aerodynamic forces due to airfoil motion may be compu
Using the 22 smallest eigenvalugs| < 4.0) and corresponding eigenvectors (compute
on the 65x 32 node grid), we constructed a reduced-order model of the unsteady f
due to pitching motion of the airfoil about its midchord. The unsteady pressure dis
bution on the surface of the pitching airfoil is plotted in Fig. 10 for the case where f
airfoils vibrate with a reduced frequeneyof 2.0. Shown is the solution computed usinc
the standard reduced-order model, and the reduced-order model with one and four cc
tions. Also shown is the solution computed using the direct time-linearized analysis. N

Relcp/a]

=Y J

9 .
g |
S wp Pressure Surface i
E 3

o

by

Suction Surface
9 1 1 1 1
‘0.0 0.2 0.4 0.6 0.8 1.0

Distance Along Chord, &/c

FIG. 10. Unsteady pressure on surface of isolated NACA 2410 airfoil pitching about its midchord witt
reduced frequency of 2.0: , direct time-linearized solutign— - —, 22 eigenmodes], 22 eigenmodes
plus one corrections, 22 eigenmodes plus four corrections.




ANALYSIS OF UNSTEADY FLOWS 589

1.5

£l
O
2
g
S 2 nnnnuuunuunnnnnnnﬂﬂ'{I
> .. o [« ]
% 0 o--yg:::::' . Wumunnnunnnuﬂunn
wn - __.:,-..-.--.,...‘ A
.§" o U’UONQMQN
e ¥ A rT PR
2 QST
> ° ’
g 1 1 1 1
'0.0 1.0 2.0 3.0 4.0 5.0

Reduced Frequency, ©

FIG. 11. Unsteady lift on NACA 2410 airfoil pitching about its midchord:=——, direct time-linearized
solution — - —, 22 eigenmoded], eigenmodes plus one correctien22 eigenmodes plus four corrections.

that the results computed using the standard reduced-order model differ greatly fron
direct analysis. In particular, one observes that the Kutta condition is not satisfied. \
one static correction, the reduced-order model solution is improved significantly. W
four static corrections, the results of the direct time-linearized analysis and the redu
order model are virtually identical. This is especially remarkable considering that 22 eic
modes correspond to just 0.54% of the total number of eigenmodes for this computati
grid.

Next, using the same reduced-order model, we computed the unsteady lift due to pitc
motion of the airfoil for a range of reduced frequencies. Shown in Fig. 11 is the unsteady
predicted using the standard reduced order model, as well as the solution found usin
direct time-linearized analysis. While the standard reduced-order model correctly pre
some of the qualitative behavior of the direct time-linearized solution, quantitatively
two solutions differ significantly. Also shown in Fig. 11 are the results of the reduced-or
model using a single static correction and four static corrections. Note that with four st
corrections, the reduced-order model gives very good results for reduced frequenpies
to about 3.5 using just 0.54% of the total number of eigenmodes.

We note that for the high reduced frequencies considered in this example, we need
retain 22 eigenmodes. However, if one is interested in the response at lower frequer
as would be the case in most aeroelastic problems, then fewer modes would need
retained in the model. For example, to model the response for reduced frequencies
unity would require only about seven modes.

Finally, we remark on the computational requirements of the reduced-order mode
single direct time-linearized solution computed using a«&® node grid required about
7 s of computer time on a Silicon Graphics Indigo 4400 workstation. To compute
22 smallest eigenvalud$hi| < 4.0) and the corresponding left and right eigenvectors r
quired just 194 s, about an order of magnitude more than the direct solution. However,
the eigenmodes have been computed, the response over a range of frequencies anc
shapes of vibration can be obtained for almost no additional cost.
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FIG. 12. Indicial lift due to plunging of a NACA 2410 airfoil in subsonic floM,, =0.5. ——, 2 eigen-
modes; —-—, 22 eigenmodes;——, 110 eigenmodes. Indicial lift due to plunging of a flat plate at M0.5:

—0—.

4.5. Indicial Response Computed Using the Reduced Order Model

Although the main emphasis in this paper has been to compute the aerodynamic res;
of the airfoil to a harmonic disturbance, one may also use the eigenmode informatio
compute the response to arbitrary disturbances. Shown in Fig. 12 is the unsteady
history of the lift acting on the airfoil due to a step change in the plunging velocity of t
airfoil. These results were computed using 2, 22, or 110 eigenmodes plus a single ¢
correction. For long times, the lift asymptotically approaches 1.272, which as expecte
approximately equal to the steady lift curve slope dividedbyl2would appear from these
results that the response for moderate nondimensional {iohes > 5) can be predicted
quite well using just two eigenmodés.

For small to moderate time®.2 <Ut/c <5.0), the shape of the lift curve is at least
gualitatively correct as more eigenmodes are included in the reduced-order model. Fc
ample, the unsteady lift &= 0 can be computed using piston theory. For flat plate airfoil
the initial coefficient of lift should be equal tg'2r M) = 1.27. The lift should then decrease
to a minimum of about 0.7 at a timét /c~ 0.75 (see, e.g. [36]). The present results qua
itatively agree with the classical results, except for very small times. For very small tin
an increasing number of eigenmodes must be retained. However, these eigenmode:
very large eigenfrequencies and, therefore, cannot be accurately computed using con
tional grids with finite resolution. For this reason, responses at very small times cannc
accurately predicted. This deficiency should not be attributed to the reduced-order m
but rather to truncation errors associated with the original finite element discretization

1 The lowest frequency eigenmode has an eigenfrequency of zero, with an eigenmode shape correspondi
constant potential. This mode does not contribute to the unsteady lift. Therefore, for the results shown in Fi
only the second eigenmode contributes to the unsteady lift.
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5. DISCUSSION

In this paper, we have presented an eigenanalysis and reduced-order modelling tech
for predicting unsteady flows about isolated airfoils. We have found that complex unste
flows can be modelled accurately using a small number of eigenmodes. Physically,
is because the unsteady flow may be divided into two parts: a quasi-static portion pl
dynamic part that represents a correction to the quasi-static part. The dynamic portion
unsteady flow can be further decomposed into a sum of fluid eigenmodes. However,
those eigenmodes with eigenvalues approximately equal to or smaller than the excit
frequency participate significantly. Hence, a very few eigenmodes must be computed.
the eigenmodes have been computed, the reduced order model may be used to analy
unsteady aerodynamic response over a wide range of frequencies and mode shapes f
little additional computational effort. Also, the technique may be readily applied to exist
time-domain and frequency-domain analyses.

Depending on the range of frequencies of interest and the size of the aerodyn
discretization, the eigenmode-based reduction can be a very efficient and attractive
proach. This technique has a number of advantages over more conventional time-marc
time-linearized methods, or even proper orthogonal decomposition techniques. For ¢
to medium size problems, the computation of the eigenmode information required
the reduced-order model is modest, and the eigenmode reduction approach is faste
proper orthogonal decomposition. For large problems, such as three-dimensional f
about wings, the computation of the eigenvectors become increasingly difficult, and pr:
orthogonal decomposition may be the preferred approach.

We note that the form of the reduced-order model, a low-order rational polynomia
jw, is ideally suited for use in the design of active control strategies. The poles of
transfer function are the eigenvalues of the fluid system and, hence, are independent
mode shape of airfoil vibration. The zeros, however, will depend on both the mode shay
airfoil vibration and the desired output force (e.g., the unsteady lift resulting from pitchi
motion).

Finally, the eigenmode information itself may provide importantinsights into the physi
behavior of unsteady flows. For example, the authors have recently applied this techr
to viscous flow models and have been able to predict the onset of flow instabilities,
rotating stall in cascades with fairly large regions of separations [37]. Work is underwa
extend the method to transonic flow calculations.
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