
JOURNAL OF COMPUTATIONAL PHYSICS147,568–593 (1998)
ARTICLE NO. CP986102

Eigenmode Analysis of Unsteady
Flows about Airfoils
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We present a reduced-order modelling technique for analyzing the unsteady sub-
sonic aerodynamic flow about isolated airfoils. To start, we model the flow using the
time-linearized full potential equation. The linearized potential equation is discretized
on a computational mesh composed of quadrilateral elements using a variational fi-
nite element technique. The resulting discretized equations are linear in the unknown
potential, but quadratic in the reduced frequency of vibration. We compute the domi-
nant (low frequency) eigenfrequencies and mode shapes of the unsteady fluid motion
using a nonsymmetric Lanczos algorithm, and then we use these eigenmodes to con-
struct a low degree-of-freedom reduced-order model of the unsteady flow field. A
static correction technique is used to account for the high-frequency eigenmodes not
retained in the model. We show that the unsteady flow can be modelled accurately
using a relatively small number of eigenmodes.c© 1998 Academic Press

1. INTRODUCTION

In this paper, we present a new approach for computing unsteady flows about isolated
airfoils. In particular, we first compute the dominant natural frequencies (eigenvalues) and
mode shapes (eigenmodes) of unsteady fluid motion about the airfoil. Then, using a small
number of these natural modes, we assemble a “reduced-order model” of the unsteady flow
field.

Until recently, most unsteady aerodynamic analyses of unsteady flows about wings and
airfoils have been one of two types: time domain or frequency domain. In the time-domain
approach (see, e.g., [1–6]), one discretizes the fluid equations of motion on a computational
grid surrounding the airfoil. The solution is then marched from one time level to the next
subject to appropriate unsteady boundary conditions, e.g. arising from the prescribed motion
of the airfoil. The advantage of this approach is that it is relatively straightforward to
implement and can model nonlinear as well as linear disturbances. However, because of the
need for such schemes to be both time accurate and stable, the size of the time step will
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generally be quite small, especially for explicit schemes. Furthermore, if the unsteady flow
must be calculated for a number of frequencies and mode shapes of airfoil vibration, then
a separate time-domain analysis must be performed for each case leading to excessively
large computational times.

The other widely used approach is the frequency domain or “time-linearized” technique
(see, e.g., [7–13]). Using this approach, one first computes the time-mean (steady) flow
about the airfoil by solving the steady flow equations using conventional computational fluid
dynamic (CFD) techniques. One then assumes that any unsteadiness in the flow is small and
harmonic. The governing fluid equations of motion and the associated boundary conditions
are linearized about the mean flow solution to arrive at a set of linear variable coefficient
equations that describe the small disturbance flow. The resulting time-linearized equations
can be solved very efficiently. Nevertheless, as in the time-domain approach, a separate
analysis must be performed for each frequency and vibrational mode shape of interest.

Both the time-domain and frequency domain analyses predict the unsteady flow field
for a single prescribed unsteady condition. Thus, other than through extensive parametric
studies, these models do not always provide insight into the physics of the unsteady flow.
Furthermore, because of the form of these models and the large number of degrees of
freedom, the time-domain and frequency-domain models are not well suited for applications
involving active control. To reduce the number of degrees of freedom to a manageable level,
a number of investigators have developed reduced order models based on curve-fitting
techniques (see [14–17]). Usually, the unsteady aerodynamic response (e.g., the unsteady
lift due to plunging motion) is fit to a sum of exponentials in time. This form of reduced-
order model is especially convenient because the Laplace transform is simply a rational
polynomial in the Laplace plane. However, these curve-fit reduced-order models are not
completely satisfactory because the time-domain or frequency-domain analyses on which
they are based must still be applied at a number of different frequencies. Furthermore, these
models make no attempt to use information about the fluid eigenmodes, which presumably
play an important role in the fluid motion.

In structural dynamic problems, the conventional approach to solving unsteady vibration
problems is to construct reduced-order models using the eigenmodes of the structure as
basis functions. It seems plausible that some of the techniques developed for structural
dynamic problems could be applied to unsteady aerodynamic flows. In fact, modal analysis
techniques have been applied to selected fluid flow problems, for example, boundary layer
stability and fluid slosh in tanks. However, only recently have investigators computed the
natural frequencies and mode shapes of unsteady flows about airfoils.

Parker [18] has computed the natural frequencies of acoustic modes in a cascade of flat-
plate airfoils operating at low Mach numbers. He found his predicted natural frequencies
to be in good agreement with experimentally measured values. More recently, Rizzi and
Eriksson [19] computed the smallest eigenvalues of a linearized unsteady two-dimensional
Euler flow solver. In particular they studied the effect of the far-field boundary conditions
and artificial viscosity on the conditioning of the numerical integration scheme. Mahajan,
Dowell, and Bliss [20, 21] have computed the eigenfrequencies of viscous flow over isolated
airfoils modelled with a Navier–Stokes solver to better understand the role of artificial
viscosity. Mahajan, Dowell, and Bliss [22] have also computed the coupled fluid/structure
eigenvalues for the case of compressible flow over an elastic airfoil. The present authors
have computed the natural frequencies and mode shapes of unsteady compressible cascade
flows [23] and incompressible unsteady flows about two-dimensional airfoils, cascades,
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and three-dimensional wings ([24]), and have used the resulting eigenvalues to construct
low degree-of-freedom reduced-order aerodynamic models. Romanowski and Dowell [25]
have used the eigenmodes of a time-domain Euler code to form reduced-order models of
flows about isolated airfoils.

Another approach for constructing reduced-order models is based on proper orthogonal
decomposition. In this approach one computes the aeroelastic response due to a step in
pitch, for example, as a function of time. Then, at several instants in time, one computes
the deviation of the unsteady flow field from the mean flow field producing an ensemble
of flow field perturbations. The dominant eigenvectors of the autocovariance matrix based
on this assemble are used to form a reduced-order aeroelastic model. Note that in both the
eigenmode-based and the proper orthogonal decomposition reduced order models, a rela-
tively small dimension basis is extracted from an accurate representation of the unsteady
flow. The unsteady aerodynamic/aeroelastic equations are then projected onto the spaced
spaned by the basis. Romanowski [26] applied the proper orthogonal decomposition tech-
nique to the unsteady aerodynamic flow around a subsonic isolated airfoil described by
the Euler equations. A review of this method is provided by Sirovich [27] and by Holmes,
Lumley, and Berkooz [28].

In this paper, we apply the concepts developed by Hall, Florea, and Lanzkron [23] to
model the unsteady subsonic compressible flow about an isolated airfoil. We show that
the unsteady flow can be modelled accurately and efficiently using reduced-order models
constructed using a small number of eigenmodes, provided that one or more so-called “static
corrections” are applied to approximate the influence of the high-frequency eigenmodes
not retained in the model. Work is underway to extend the method to transonic flow using
both the full potential equations and the Euler equations. Preliminary results show that
no additional difficulties encountered in either the flow model linearization or the eigenvalue
calculations.

2. FLOW FIELD DESCRIPTION

2.1. Nonlinear Full Potential Flow Model

In this paper, we consider the unsteady subsonic flow about an isolated two-dimensional
airfoil due to vibratory motion of the airfoil (the flutter problem). We assume that the flow
is isentropic and that any boundary layers are thin and attached. Under these circumstances,
the full potential equation provides a reasonably accurate description of the actual flow
field. The full potential equation is given by

∇2φ̂ = 1

ĉ2

[
∂2φ̂

∂t2
+ 2∇φ̂ · ∂φ̂

∂t
+ 1

2
∇φ̂ · (∇φ̂)2

]
, (1)

whereφ̂ is the velocity potential and̂c is the local speed of sound. The scalar velocity
potential is related to the fluid velocity bŷv = ∇φ̂. The superscript “ ˆ ” indicates that the
quantity is unsteady.

The unsteady static pressurep̂ and density ˆρ are related to the velocity potential by the
unsteady compressible Bernoulli equation,

p̂ = PT

{
1 − γ − 1

C2
T

[
1

2
(∇φ̂)2 + ∂φ̂

∂t

]}γ /(γ−1)

, (2)

wherePT is the total pressure,γ is the ratio of specific heats, andCT is the total speed of
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FIG. 1. Domain for the solution of the steady and linearized unsteady full potential equations.

sound. Similarly, the unsteady density is given by

ρ̂ = ρT

{
1 − γ − 1

C2
T

[
1

2
(∇φ̂)2 + ∂φ̂

∂t

]}1/(γ−1)

, (3)

whereρT is the total density.
In addition to the governing field equation, boundary conditions are required to complete

the problem specification (see Fig. 1). The surface of the airfoil is impermeable. Therefore,
the airfoil boundary condition requires that the velocity of the fluid normal to the boundary
be equal to the normal component of velocity of the airfoil itself. Hence, we may write

∇φ̂ · n̂ = ∂ r̂
∂t

· n̂, (4)

wherer̂(s, t) is the prescribed position of a points on the airfoil as a function of time, and
n̂ is the unit normal to the airfoil surface pointing into the fluid.

The unsteady wake shed behind the airfoil is a sheet of vorticity in an otherwise irrotational
flow field. In the present work, we model the vortex sheet as a massless impermeable
membrane. Because the membrane is impermeable, the boundary condition given in (4)
also applies on either side of the wake. However, now the positionr̂(s, t) of a points on the
wake as a function of time is not knowna priori but, instead, must be found as part of the
solution. In addition, since the membrane is massless, it cannot support a pressure jump.
Therefore, we require that

v p̂b = 0, (5)

wherev p̂b is the pressure jump across the wake. Finally, the Kutta condition is applied by
requiring that the wake remain attached to the trailing edge of the the airfoil.

In addition to the near-field boundary conditions, far-field boundary conditions must be
applied to ensure that the mean flow velocity approaches the freestream velocity at infinity,
and that unsteady disturbances radiate away from the airfoil.

2.2. Flow Decomposition

For many aeroelastic and aeroacoustic flows of practical interest, the unsteadiness is
small compared to the mean flow. For example, at the onset of flutter, the vibration of the
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airfoil is small and so is the resulting unsteady flow. Therefore, the unsteady full potential
equation may be linearized to obtain a linear variable coefficient equation for the small
unsteady disturbance flow.

For numerical accuracy, it will be convenient to work in a coordinate system that conforms
to the motion of the airfoil. Consider the case where the airfoil vibrates harmonically with
frequencyω. The usual physical coordinatesx, y, t are related to the “strained coordinates”
ξ, η, τ by the transformation

x(ξ, η, τ ) = ξ + f (ξ, η)ej ωτ (6)

y(ξ, η, τ ) = η + g(ξ, η)ej ωτ (7)

t (ξ, η, τ ) = τ. (8)

Here, the physical and strained coordinate system are the same to zeroth order, but differ
from first order in the small perturbation functionsf andg. The functions f andg are
chosen so that in the strained coordinate system the airfoil appears stationary. Said another
way, if the nodes of a computational grid are fixed in the strained coordinate system, then in
the physical coordinate system, the grid nodes will deform so as to conform to the motion
of the airfoil.

Having defined the coordinate transformation, we now decompose the unsteady velocity
potential φ̂ into the sum of two parts: a mean or steady potential8 and an unsteady
disturbance potentialφ, i.e.,

φ̂(ξ, η, τ ) = 8(ξ, η) + φ(ξ, η)ej ωτ , (9)

where the unsteady potentialφ is assumed to be much smaller than the mean flow potential
8. Note that the perturbation series is carried out in the strained coordinate system. Thus, in
the physical coordinate system, unsteadiness will arise from the unsteady velocity potential
φ and the unsteady deformation of the mean velocity potential8.

At first, defining the potential decomposition in the strained coordinate system would
seem to complicate unnecessarily the solution of the unsteady flow field. However, the use
of strained coordinates eliminates the need to extrapolate the unsteady boundary conditions
from the instantaneous position of the airfoil to the mean position of the airfoil as required
in fixed grid calculations. These extrapolation terms contain second derivatives of the mean
flow potential and are very difficult to evaluate accurately in a numerical scheme, especially
near the leading and trailing edges. Furthermore, the use of strained coordinates is phys-
ically appealing since, to zeroth order, one would expect that the flow around a displaced
airfoil would be the same as the steady flow, but displaced to coincide with the new position
of the airfoil. Hall [8] and Hall and Clark [9] have shown that the use of strained coordinates
greatly improves the accuracy of time-linearized unsteady flow computations.

Having defined the strained coordinates and the flow decomposition, we now need to
define the differential operators∇ and∂/∂t in terms of the strained coordinates. To first
order, these may be expressed as

∇ =
 ∂

∂x

∂
∂y

=
[

1 − fξ −gξ

− fη 1 − gη

]  ∂
∂ξ

∂
∂η

= J∇′ (10)
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and

∂

∂t
= ∂

∂τ
− ∂f

∂τ
· ∇′, (11)

wheref = ( f, g)T. Next, we substitute Eqs. (6)–(11) into the nonlinear full potential equa-
tion and associated near-field and far-field boundary conditions. Collecting terms of zeroth
and first order inφ and f gives the mean flow full potential and the time-linearized full
potential equations, respectively.

2.3. Nonlinear Mean Flow Description

Retaining zeroth-order terms in the full potential equation gives the mean full potential
equation

∇′ · (R∇′8) = 0, (12)

whereR is the mean flow static density given by

R = ρT

[
1 − γ − 1

2C2
T

∇′82

]1/(γ−1)

(13)

Equation (13) is recognized as the steady continuity equation.
Similarly, the mean flow airfoil boundary condition is given by

∂8

∂n
= 0 (14)

On the wake, (14) applies as well, along with the requirement that the mean pressure jump
across the wake be zero,

vPb = 0, (15)

where the mean pressureP is given by

P = PT

[
1 − γ − 1

2C2
T

∇′82

]γ /(γ−1)

(16)

Finally, at the far-field boundary, we require the mass flux through the boundary to be equal
to the mass flux produced by the freestream. Therefore, we apply the Neumann condition

∂8

∂n
= V∞ · n, (17)

whereV∞ is the freestream velocity, and̄n is the unit normal to the far-field boundary.
This completes the specification of the mean flow field. Note that the problem is nonlinear

in the unknown potential8. In practice, the nonlinear problem may be reduced to a sequence
of linear problems using Newton iteration.

2.4. Small Disturbance Unsteady flow Description

Having described the mean flow field, we now turn our attention to the specification
of the small disturbance unsteady flow field. The first-order terms in the series expansion
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of the full potential equation, (1), gives the governing equation for the unknown unsteady
perturbation potentialφ, i.e.

∇′ · R∇′φ − ∇′ ·
[

R

C2
(∇′8T∇′φ + j ωφ)∇′8

]
− R

C2
( j ω∇′8T∇′φ − ω2φ)

= −∇′ · [R(J̃∇′8 + ∇′ · f∇′8)] + j ωf · ∇′ R

+ ∇′ ·
[

R

C2

(
1

2
∇′8T J̃∇′8∇′8 − j ω∇′ · f∇′8∇′8

)]
+ R

C2

[
j ω

2
∇′8T J̃∇′8 + ω2f ·∇′8

]
, (18)

whereJ̃ is the first-order part ofJTJ − I andC is local mean flow speed of sound. In (18),
we have grouped the terms involving the unknown perturbation potentialφ on the left, and
the terms involving the prescribed deformation of the physical coordinates on the right.
Note that the linearized full potential equation, (18), is linear in the unknown perturbation
potentialφ, with variable coefficients that depend upon the mean flow. The right-hand side
represents an inhomogeneous forcing term that arises from the motion of the airfoil (and
hence unsteady coordinate straining).

Similarly, we find that the linearized boundary conditions on the airfoil surface are given
by

∂φ

∂n
= j ωf · n̄ − J̃∇8 · n̄, (19)

wheren̄ is the unit normal to the mean location of the airfoil surface. The first term on
the right-hand side of (19) represents the upwash due to the local airfoil velocity normal to
the mean position of the airfoil surface. The second term represents an additional upwash
required to counteract a downwash resulting from shearing of the mean potential field near
the airfoil due to the strained coordinate transformation. Finally, the usual upwash due to
rotation of the airfoil does not appear, nor is it required, since the mean potential field in
the vicinity of the airfoil rotates with the airfoil.

On the wake, a no-through-flow condition similar to (19) holds, i.e.,

∂φ

∂n
= j ωf · n̄ − J̃∇8 · n̄ + j ωrw + V

∂rw

∂s
, (20)

whererw is the displacement of the wake normal to its mean position. Note, however, the
two additional terms that appear on the right-hand side of (20). These terms appear because
motion of the wake, which is not knowna priori, does not exactly coincide with the motion
of the physical coordinatesx, y, t corresponding to the mean wake location inξ, η, τ space.
These two terms represent an additional wash due to the translation and rotation of the wake,
respectively. Also, the jump in the perturbation pressure across the wake must be zero, so that

vpb = 0, (21)

wherep is the perturbation pressure.
Finally, boundary conditions must be applied on the far-field boundary to ensure that

unsteady disturbances propagate away from the airfoil. We apply boundary conditions
similar to those proposed by Bayliss and Turkel [29]. In the far field, the mean flow is
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uniform and the linearized potential equations may be expressed as

−ω2φ + 2 j ωU∞
∂φ

∂ξ
− (

C2
∞ − U2

∞
)∂2φ

∂ξ2
− C2

∞
∂2φ

∂η2
= 0, (22)

where for simplicity we have assumed that the physical and strained coordinate systems
coincide in the far field and that the freestream flow is in theξ -direction. Here,U∞ and
C∞ are the freestream flow velocity and speed of sound. For subsonic flows, Bayliss and
Turkel [29] have shown that an approximate but accurate radiation boundary condition for
the convective wave equation, (22), is given by

B2φ =
(

C1 j ω + R

d

∂

∂ R
+ 5

2d

)(
C1 j ω + R

d

∂

∂ R
+ 1

2d

)
φ = 0, (23)

where

R = (ξ2 + η2)1/2,

d =
(

ξ2

1 − M2∞
+ η2

)1/2

,

and

C1 =
[
1 − M2

∞
]−1/2

C∞

[
1 − x

d

M∞(
1 − M2∞

)1/2

]
.

Grouping terms in (23) by powers ofω gives

B2φ = 1

d2

(
R2 ∂2φ

∂ R2
+ 3R

∂φ

∂ R
+ φ

2

)
+ j ω

2C1

d

(
R

∂φ

∂ R
+ φ

)
− ω2C2

1φ = 0. (24)

We have found that for moderate to high reduced frequencies, these boundary conditions
are highly nonreflective. However, in the limit of zero reduced frequency, (24) reduces to

B2φ = 0 = 1

d2

(
R2 ∂2φ

∂ R2
+ 3R

∂φ

∂ R
+ φ

2

)
. (25)

The third term on the right-hand side is inconsistent with the linearization of the mean flow
far-field boundary condition. For instance, at very low reduced frequencies, the unsteady
lift due to a pitching motion of the airfoil with unit amplitude should be equal to the lift
curve slope. However, if the termφ/2d2 is retained in the far-field boundary condition, the
correct lift is not obtained. Therefore, (24) is used at the far-field boundary, but with the
termφ/2d2 omitted. We have found that this modification greatly improves the very low-
frequency calculations and does not significantly alter the moderate and high-frequency
behavior.

This completes the specification of the small disturbance unsteady flow problem. Once
this linear boundary value problem has been solved, the unsteady perturbation pressure on
the surface of the airfoil may be found using the linearized Bernoulli equation,

p = −R

[
∇′8T∇′φ + j ωφ − j ωf · ∇′8 + 1

2
∇′8T J̃∇′8

]
. (26)

The unsteady pressure can then be integrated to find the unsteady lift and moment.
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2.5. Discretization of the Governing Equations

Solving for the unsteady perturbation flow is a two-step process. First, the equations
governing the nonlinear mean flow field are discretized on a computational grid and solved
numerically. Then, the mean flow solution is used to form the variable coefficients appearing
in the small disturbance equations, which are also solved numerically for each vibratory
mode and frequency of interest.

Hall [8] has shown that both the mean flow and linearized unsteady potential equations are
the Euler–Lagrange equations of variational principles that are extensions of a variational
principle given by Bateman [30]. Furthermore, the mean flow and linearized unsteady air-
foil boundary conditions are identical to the natural boundary conditions of the variational
principles. Therefore, in the present work, we discretize the field equations and the airfoil
boundary conditions using variational finite elements. The elements are four-node isopara-
metric elements. The far-field boundary conditions and the wake boundary conditions are
discretized using a combination of finite element and finite difference techniques.

The discretized equations for the mean flow (12) are nonlinear and are solved using
Newton iteration. The discretized equations governing the unsteady perturbation flow (18)
are, of course, linear and of the form

Aφ = b, (27)

whereφ is the vector containing the unknown values of velocity potentialφ at each of the
grid nodes and the unknown wake motionrw at each node along the wake. The matrixA
is a large, sparse, complex, nonsymmetric matrix. The vectorb arises from the prescribed
motion of the airfoil (and, hence, the physical coordinate system). Using the conventional
“direct” time-linearized solution technique, one would solve (27) by Gaussian elimination
or LU decomposition for each frequency and mode shape of vibration. In Section 3, we
describe an alternative modal analysis technique based on the eigenmodes of the fluid
dynamic system.

3. REDUCED-ORDER MODELLING TECHNIQUE

3.1. Normal Mode Analysis

Consider the assembled matrix equation for the unsteady small disturbance flow, (27).
Every term in the matrixA is quadratic in the frequencyω so that(

A0 + j ωA1 + ω2A2
)
φ = b, (28)

where the matricesA0, A1, andA2 are real nonsymmetricn × n matrices and wheren is the
number of unknown entries inφ. (We remark, however, that without the wake and far-field
boundary conditions, the matricesA0 andA2 would be symmetric and the matrixA1 would
be skew symmetric.) The form of discretized equations is similar in form to that obtained
for linear structural dynamic problems. As in structural dynamics, it will prove useful to
solve (28) using a normal mode analysis. Toward that end, it will be convenient to convert
(28) to first-order form. LetΦ be the “state” of the system defined by

Φ =
{

j ωφ
φ

}
. (29)
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Equation (28) may then be expressed as

AΦ − j ωBΦ = b̄, (30)

where

A =
[

G 0
A1 A0

]
, B =

[
0 G

A2 0

]
, b̄ =

{
0
b

}
,

and whereG is any nonsingular matrix.
Next, we seek to diagonalise (30). Therefore, we need to compute the left and right

eigenvectors of the generalized eigenvalue problem

Axi = λiBxi , (31)

whereλi is thei th eigenvalue andxi is the corresponding right eigenvector. (For convenience,
we order the eigenvalues from smallest to largest in magnitude.) More generally, we may
write

AX = BXΛ, (32)

whereX is a 2n × 2n matrix whosei -th column is the eigenvector corresponding toλi ,
andΛ is a diagonal matrix whosei th diagonal entry is the eigenvalueλi . Similarly, the
generalized left eigenvector problem may be written as

ATY = BTYΛ, (33)

whereY is a square matrix containing the 2n left eigenvectorsyi . The left and right eigen-
vectors are orthogonal with respect to the matricesA andB; we normalize the eigenvectors
so that they are orthonormal with respect toB. Therefore,

YTBX = I (34)

and

YTAX = Λ. (35)

3.2. Standard Reduced-Order Model

Next, we let the state vectorΦ be a linear combination of the right eigenvectors, i.e.,

Φej ωτ = Xwej ωτ , (36)

wherew is the vector of modal coordinates and where we have temporarily reintroduced
ej ωτ to emphasize that we seek the unsteady response to harmonic forcing. Substitution of
(36) into (30) gives

AXw − j ωBXw = b̄. (37)
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Premultiplying (37) byYT and making use of the orthogonality conditions, (34) and (35),
gives

λi wi − j ωwi = δi , i = 1, 2n (38)

whereδi is the participation factor given byδi = yT
i · b̄. Note that (38) represents a set of

uncoupled equations for the unknown modal coordinates,wi . The amount of each mode
present in the solution may be computed independently; the contribution of each mode can
then be summed to determineΦ, so that

Φ =
2n∑

i =1

wi xi =
2n∑

i =1

δi

λi − j ω
xi . (39)

Note that the amount of each mode present in the solution is just the participation factor
δi divided by the difference between the eigenvalueλi and the forcing frequencyj ω.
Thus, modes with eigenfrequencies much larger than the forcing frequency are not strongly
excited. Hence, as is commonly done in structural dynamic problems, we truncate the series
in (39) ati = m, wherem< 2n and|λm| À |ω|.

3.3. Static Correction Technique

One finds that when using the standard reduced order model (mode superposition) de-
scribed in Section 3.2, an excessively large number of eigenmodes must sometimes be
retained to obtain accurate results. The problem is that while the dominant eigenmodes
have been retained, all of the eigenmodes participate in the response to some degree. How-
ever, if the frequency of the excitation is well separated from the eigenfrequency of a
given mode, then that mode will respond in an essentially static way. This suggests that the
unsteady solutionΦ may be divided into two parts, i.e.,

Φ = Φ(1)
static+ Φ̃. (40)

The first term on the right-hand side of (40) is the solution one would obtain if the excitation
were quasi-steady and is found by solving the linear system of equations

AΦ(1)
static = b̄. (41)

The second term on the right-hand side of (40) is a correction that accounts for the fact that
those eigenmodes with small eigenfrequencies respond dynamically.

Next, we letΦ̃= Xw̃. Substitution of this expression and (40) into (30), and again, making
use of the orthogonality conditions, gives after some manipulation

Φ =
2n∑

i =1

j ω

λi

δi

λi − j ω
xi + Φ(1)

static. (42)

The advantage of (42) over (39) is that the series in (42) converges more rapidly since
| j ω/λi | ¿ 1 for largei . Thus, many fewer terms need to be retained in the series to obtain
accurate results. This technique is completely analogous to the “static correction” or “mode
acceleration” methods used in structural dynamics problems (see, e.g. [31]).
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Another way to derive (42) is to note that

1

λi − j ω
= j ω

λi

1

λi − j ω
+ 1

λi
. (43)

Substitution of (43) into (39) gives

Φ =
2n∑

i =1

j ω

λi

δi

λi − j ω
xi +

2n∑
i =1

δi

λi
xi . (44)

The second series on the right is recognized as the static responseΦ(1)
static. This process can

be repeated again so that

Φ =
2n∑

i =1

(
j ω

λi

)2
δi

λi − j ω
xi +

2n∑
i =1

j ω
δi

λ2
i

xi +
2n∑

i =1

δi

λi
xi . (45)

The second term on the right is equal toΦ(2)
static, whereΦ(2)

static is the solution to

AΦ(2)
static = BΦ(1)

static. (46)

Generalized for the case ofNc static corrections, we obtain

Φ =
2n∑

i =1

(
j ω

λi

)Nc δi

λi − j ω
xi +

Nc∑
k=1

( j ω)k−1Φ(k)
static, (47)

where

AΦ(k)
static = BΦ(k−1)

static . (48)

One might expect that the solution of the linear system of equations given in (48) would make
the “method of multiple static corrections” prohibitively expensive. However, the matrixA
need only be factored once using LU decomposition. Thereafter, back substitution is used
to solve (48). Furthermore, the matrixA is factored during the solution of the eigenvalue
problem and may be stored for this purpose. Note that the right-hand side of Eq. (28) can
be written as a quadratic function of the frequency, that is,

b = b0 + j ωb1 + ω2b2, (49)

where the vectorsb0, b1, andb2 do not depend on the frequency. Hence, for each type of
external excitation (pitch, plunge, or a more general shape deformation), the multiple static
corrections can be computed with three back solves and the results used for any frequency
of excitation. Note that the eigenvalues and eigenvectors do not depend on the external
excitation.

Generally, the first series in (48) converges much more quickly than the standard reduced
order model series because for largei , | j ω/λi | ¿ 1. Nevertheless, the method may break
down if Nc is too large. This is because the leading order terms in each of the two series in
(48) grow rapidly with increasingNc. The sum of the two series, however, is order unity. In
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finite precision arithmetic, such operations can lead to significant roundoff errors. We have
found that good results are generally obtained for values ofNc between one and six.

For the reduced-order modelling techniques described above to be computationally vi-
able, one must be able to calculate efficiently all of the eigenvalues and corresponding left
and right eigenvectors for which|λi | ≤ λspecified, whereλspecified is larger than the maxi-
mum frequency of interest. The authors have implemented a large, sparse, nonsymmetric,
quadratic, generalized eigenvalue solver based on the Lanczos algorithm with reorthogo-
nalisation to solve the eigenvalue problem given by (33) and (34). The interested reader
is referred to [32, 33] for a general discussion of the Lanczos algorithm, and to [23] for
specific implementation details.

3.4. Aerodynamic Response to Arbitrary Airfoil Motion

In this section, we consider the aerodynamic response of an airfoil to arbitrary motion of
the airfoil. In the time domain, the state vectorΦ(t) is described by 2n first-order ordinary
differential equations of the form

AΦ(t) − BΦ̇(t) = b̄(t) (50)

Consider the case of airfoil which is initially at rest that begins to translate downward with
amplitudeh(t) at timet = 0. Taking the Laplace transform of (50) gives

AΦ∗(s) − BΦ∗(s) = h∗(s)
(
d0 + sd1 + s2d2

)
, (51)

where the superscript “∗ ” denotes that Laplace transform of the quantity in question. The
vectorsd0, d1, andd2 are constant vectors that depend on the type of airfoil motion. (More
precisely, the vectors depend on the details of the prescribed grid motion. For rigid-body
grid motion, the vectord0 is uniform, constant in space, and reduces to zero in the region
where the grid pitches with the airfoil.)

Next, we represent the unsteady responseΦ(t) as a sum of eigenmodes,

Φ(t) =
2n∑

i =1

wi (t)xi , (52)

where herewi (t) is the time history of the amplitude of thei th eigenvector. Taking the
Laplace transform of (52) gives

Φ∗(s) =
2n∑

i =1

w∗
i (s)xi . (53)

Premultiplying (53) byyT
j , and making use of the orthogonality properties of the eigenvec-

tors, we find that

w∗
i (s) = −h∗(s)

δ0,i + sδ1,i + s2δ2,i

s − λi
, (54)

where, for example,δ0,i = yT
i · d0. Finally, taking the inverse Laplace transform of (54), we

find that

wi (t) = L−1[w∗
i (s)]. (55)
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As an example, consider the case of an airfoil that is initially at rest that begins to translate
with constant speedH1 at timet = 0,

h(t) =
{

H1t, t ≥ 0,

0, t < 0.
(56)

The Laplace transform ofh(t) is given by

h∗(s) = H1/s2. (57)

Substitution of (57) into (54) and (55) gives

Φ(t) = H1

2n∑
i =1

[(
t

λi
+ 1

λ2
i

)
δ0,i + δ1,i

λi

]
xi − H1

2n∑
i =1

(
δ0,i

λ2
i

+ δ1,i

λi
+ δ2,i

)
eλi txi . (58)

The first series in (58) is just the “steady-state” response and can easily be shown to be
given by

ΦSS(t) = H1A−1
(
d0t + d1 + BA−1d0

)
. (59)

Finally, the second series is truncated tom terms, wherem¿ 2n, so that

Φ(t) = ΦSS(t) − H1

m∑
i =1

(
δ0,i

λ2
i

+ δ1,i

λi
+ δ2,i

)
eλi txi . (60)

4. COMPUTATIONAL RESULTS

In this section, we use the techniques described in Sections 2 and 3 this paper to compute
the steady and unsteady subsonic flow about an isolated NACA 2410 four-digit airfoil. The
computational grids used in all cases considered in this paper are O-grids (see Fig. 2). Two

FIG. 2. Typical O-grid used for the computation of flow about an isolated airfoil.
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FIG. 3. Steady pressure on surface of NACA 2410 airfoil at 2◦ angle of attack and a freestream Mach number
M∞ of 0.5:h, 65× 32 node grid; , 65× 55 node grid.

different O-grids were used: a “small radius” grid with a radius of about 2.35 chords with
65× 32 mesh points (65 nodes around the airfoil and 32 nodes in the radial direction), and
a “large radius” grid with a radius of 6.0 chords with 65× 55 mesh points. Note that the
inner portion of the large radius grid is identical to the small radius grid. The goal of using
computational grids with different radii is to demonstrate the effectiveness of the second-
order nonreflecting boundary conditions and to determine the influence of changing the
size of the computational domain on the eigenfrequencies and eigenmodes of the unsteady
flow.

4.1. Steady Flow Analysis

To begin, we computed the steady flow about the NACA 2410 airfoil for the case where
the freestream Mach number M∞ is 0.5 and the angle of attack is 2◦. As shown in Fig. 3,
the steady flow is entirely subsonic for these conditions with a maximum Mach number M
of about 0.72 on the suction surface. The results shown in Fig. 3 were computed using two
different O-grids: the large radius grid (65× 55 nodes) and the small radius grid (65× 32
nodes). The two calculations are in fairly good agreement indicating that, at least for steady
flow calculations, the small radius grid has a sufficiently large radius to prevent spurious
influences from the far-field boundary. Similar numerical experiments (not presented here)
indicate that the resolution of the computational grids is such that the computed steady flow
results are essentially grid converged.

4.2. Direct Time-Linearized Unsteady Flow Analysis

Next, we consider the unsteady small disturbance flow about the NACA 2410 airfoil for
the case where the airfoil vibrates in pitch about its midchord with pitching amplitudeα.
The unsteady flow is computed using two complementary techniques. In this section, we
compute the unsteady flow using the more conventional direct time-linearized approach. In
Sections 4.2–4.4 we analyze the unsteady flow using the reduced order modelling techniques
described in Section 3.
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FIG. 4. Unsteady pressure on surface of NACA 2410 airfoil pitching about its midchord with a reduced
frequency ¯ω of 2.0:h, 65× 32 node grid; , 65× 55 node grid.

Consider the case where the airfoil vibrates in pitch about its midchord with a reduced
frequency(ω̄ = ωc/U∞) of 2.0. Figure 4 shows the real and imaginary parts of the unsteady
pressure distribution on the surface of the airfoil. These results were computed using two
different O-grids (small and large radius grids). Note that the two computed solutions
are virtually indistinguishable, indicating that the nonreflecting boundary conditions allow
outgoing pressure waves in the field and shed vorticity in the wake to pass through the
far-field boundary with very little reflection. If outgoing waves were reflected, then some of
the reflected pressure waves would impinge on the airfoil surface and modify the pressure
distribution. These reflected waves would have different phases for the two different grids,
and thus the solutions computed on the two different grids would differ one from the other.

Once the unsteady surface pressure has been computed, one can integrate it to obtain the
unsteady forces acting on the airfoil. Shown in Fig. 5 is the unsteady lift due to pitching
motion of the airfoil for a range of reduced frequencies. Note that the computed lift is
insensitive to the location of the computational far-field boundary. We conclude that a
computational grid with a radius of 2.35, along with the second-order nonreflecting boundary
conditions described in Section 2.4, produce satisfactory computational results for unsteady
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FIG. 5. Unsteady lift on NACA 2410 airfoil pitching about its midchord:◦, 65× 32 node grid; ,
65× 55 node grid.

flows with reduced frequencies less than or equal to about 4.5. Similarly, numerical studies
show that the solutions are essentially grid converged for this range of reduced frequencies.
Note that at zero-reduced frequency, the unsteady lift is purely real as expected with a
coefficient of lift CLα

= 1.28× 2π . The real part of the lift is slightly larger than the lift
curve slope of a flat-plate airfoil at a Mach number of 0.5 (CLα

= 1.155× 2π ) due to
thickness and steady loading effects (see, e.g. [34]).

4.3. Eigenvalues and Eigenmodes of the Unsteady Flow Field

Next, we computed the eigenfrequencies and eigenmodes of the unsteady flow about the
NACA 2410 airfoil. Shown in Fig. 6 are the computed eigenvalues of the flow for a free-
stream Mach number M∞ of 0.5 and an angle attack of 2◦ for the two different computational
grids. In both cases, the eigenvalues are modally dense; that is, the eigenvalues tend to be
very closely spaced, forming lines of eigenvalues that emanate from the origin. The authors
believe that these lines of eigenvalues correspond to discrete representations of branch cuts.
The existence of branch cuts in aerodynamic response functions is well known and indicates
that the impulse response contains nonexponential behavior. For example, Desmarais [35]
has shown that that the Theodorsen function may be represented by a continued fraction
approximation. The poles (eigenvalues) of the continued fraction lie along the negative real
axis. As more and more terms are added to the continued fraction, the poles of the continued
fraction become more densely spaced. Hall [24] calculated the eigenvalues of a vortex lattice
model of unsteady incompressible flow and found that the line of eigenvalues representing
the branch cut became more densely spaced as the length of the discrete representation of
the wake trailing behind the airfoil was increased. Similarly, Fig. 6 shows that the lines of
eigenvalues become more dense as the radius of the computational grid is increased.

By way of comparison, Fig. 7 shows the eigenvalues for the case where the flow about the
NACA 2410 airfoil is nearly incompressible(M∞ = 0.05). Again we see that the eigenvalues
form dense lines (branch cuts) with branch points at the origin. Also, as before, the lines
of eigenvalues become more dense as the radius of the computational domain is increased,
although the location of the branch cuts change as the Mach number is changed.



FIG. 6. Eigenvalues of unsteady flow about NACA 2410 airfoil, M∞ = 0.5: left, 65× 32 node grid; right,
65× 55 node grid.

FIG. 7. Eigenvalues of unsteady flow about NACA 2410 airfoil, M∞ = 0.05: left, 65× 32 node grid; right,
65× 55 node grid.
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FIG. 8. Contours of unsteady pressure associated with four eigenmodes of flow about NACA 2410 airfoil
(65× 32 node grid). Top to bottom: mode 2(λ = −0.2377+ 0i ), mode 7(λ = −1.6582+ 0.3930i ), mode 11(λ =
−2.2705+ 1.3316i ), mode 15(λ = −1.1628+ 2.7910i ), mode 21(λ = −2.5529+ 2.5039i ). Left to right: real and
imaginary parts. Shading indicates negative values.

Returning to the M∞ = 0.5 case, Fig. 8 shows the contours of unsteady pressure associ-
ated with several of the eigenmodes. Note that the pressure waves appear to pass out of the
domain without reflection. Shown in Fig. 9 are the pressure distributions on the surface of
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FIG. 9. Unsteady pressure on surface of NACA 2410 airfoil associated with four different eigenmodes. Top
to bottom: mode 2, mode 7, mode 11, mode 15, mode 21. Left to right: real and imaginary parts.

the airfoil for each of the eigenmodes shown in Fig. 8. Strictly speaking, the eigenmodes are
modes ofpotential, not pressure. The pressure distribution for a particular eigenmode was
found by applying the linearized unsteady Bernoulli equation (26) using the corresponding
eigenfrequency of that mode. When the eigenmodes are used in the reduced-order model
to compute the unsteady response at some other excitation frequency, the pressure distribu-
tions associated with these eigenmodes will be different. In fact, the pressure distribution
associated with an individual mode at an arbitrary frequencyω will generally not satisfy the
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Kutta condition. However, if the contributions from many eigenmodes are retained in the
reduced-order model, then the reduced-order model will satisfy the Kutta condition, even
if the individual modes in the model do not.

4.4. Reduced-Order Model Analysis of Unsteady Flow

Having computed the dominant eigenvalues and eigenmodes of the unsteady flow about
the NACA 2410 airfoil, we presently use that information to construct reduced-order mod-
els from which the unsteady aerodynamic forces due to airfoil motion may be computed.
Using the 22 smallest eigenvalues(|λ| ≤ 4.0) and corresponding eigenvectors (computed
on the 65× 32 node grid), we constructed a reduced-order model of the unsteady flow
due to pitching motion of the airfoil about its midchord. The unsteady pressure distri-
bution on the surface of the pitching airfoil is plotted in Fig. 10 for the case where the
airfoils vibrate with a reduced frequencyω of 2.0. Shown is the solution computed using
the standard reduced-order model, and the reduced-order model with one and four correc-
tions. Also shown is the solution computed using the direct time-linearized analysis. Note

FIG. 10. Unsteady pressure on surface of isolated NACA 2410 airfoil pitching about its midchord with a
reduced frequency ¯ω of 2.0: , direct time-linearized solution; — - —, 22eigenmodes;h, 22 eigenmodes
plus one correction;◦, 22 eigenmodes plus four corrections.
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FIG. 11. Unsteady lift on NACA 2410 airfoil pitching about its midchord: , direct time-linearized
solution; — - —, 22eigenmodes;h, eigenmodes plus one correction;◦, 22 eigenmodes plus four corrections.

that the results computed using the standard reduced-order model differ greatly from the
direct analysis. In particular, one observes that the Kutta condition is not satisfied. With
one static correction, the reduced-order model solution is improved significantly. With
four static corrections, the results of the direct time-linearized analysis and the reduced-
order model are virtually identical. This is especially remarkable considering that 22 eigen-
modes correspond to just 0.54% of the total number of eigenmodes for this computational
grid.

Next, using the same reduced-order model, we computed the unsteady lift due to pitching
motion of the airfoil for a range of reduced frequencies. Shown in Fig. 11 is the unsteady lift
predicted using the standard reduced order model, as well as the solution found using the
direct time-linearized analysis. While the standard reduced-order model correctly predicts
some of the qualitative behavior of the direct time-linearized solution, quantitatively the
two solutions differ significantly. Also shown in Fig. 11 are the results of the reduced-order
model using a single static correction and four static corrections. Note that with four static
corrections, the reduced-order model gives very good results for reduced frequencies ¯ω up
to about 3.5 using just 0.54% of the total number of eigenmodes.

We note that for the high reduced frequencies considered in this example, we needed to
retain 22 eigenmodes. However, if one is interested in the response at lower frequencies,
as would be the case in most aeroelastic problems, then fewer modes would need to be
retained in the model. For example, to model the response for reduced frequencies up to
unity would require only about seven modes.

Finally, we remark on the computational requirements of the reduced-order model. A
single direct time-linearized solution computed using a 65× 32 node grid required about
7 s of computer time on a Silicon Graphics Indigo 4400 workstation. To compute the
22 smallest eigenvalues(|λi | ≤ 4.0) and the corresponding left and right eigenvectors re-
quired just 194 s, about an order of magnitude more than the direct solution. However, once
the eigenmodes have been computed, the response over a range of frequencies and mode
shapes of vibration can be obtained for almost no additional cost.
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FIG. 12. Indicial lift due to plunging of a NACA 2410 airfoil in subsonic flow.M∞ = 0.5. ———, 2 eigen-
modes; —-—, 22 eigenmodes; , 110 eigenmodes. Indicial lift due to plunging of a flat plate at M∞ = 0.5:
—◦—.

4.5. Indicial Response Computed Using the Reduced Order Model

Although the main emphasis in this paper has been to compute the aerodynamic response
of the airfoil to a harmonic disturbance, one may also use the eigenmode information to
compute the response to arbitrary disturbances. Shown in Fig. 12 is the unsteady time
history of the lift acting on the airfoil due to a step change in the plunging velocity of the
airfoil. These results were computed using 2, 22, or 110 eigenmodes plus a single static
correction. For long times, the lift asymptotically approaches 1.272, which as expected is
approximately equal to the steady lift curve slope divided by 2π . It would appear from these
results that the response for moderate nondimensional times(Ut/c≥ 5) can be predicted
quite well using just two eigenmodes.1

For small to moderate times(0.2≤Ut/c≤ 5.0), the shape of the lift curve is at least
qualitatively correct as more eigenmodes are included in the reduced-order model. For ex-
ample, the unsteady lift att = 0 can be computed using piston theory. For flat plate airfoils,
the initial coefficient of lift should be equal to 2/(π M) = 1.27. The lift should then decrease
to a minimum of about 0.7 at a timeUt/c≈ 0.75 (see, e.g. [36]). The present results qual-
itatively agree with the classical results, except for very small times. For very small times,
an increasing number of eigenmodes must be retained. However, these eigenmodes have
very large eigenfrequencies and, therefore, cannot be accurately computed using computa-
tional grids with finite resolution. For this reason, responses at very small times cannot be
accurately predicted. This deficiency should not be attributed to the reduced-order model,
but rather to truncation errors associated with the original finite element discretization.

1 The lowest frequency eigenmode has an eigenfrequency of zero, with an eigenmode shape corresponding to a
constant potential. This mode does not contribute to the unsteady lift. Therefore, for the results shown in Fig. 12,
only the second eigenmode contributes to the unsteady lift.
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5. DISCUSSION

In this paper, we have presented an eigenanalysis and reduced-order modelling technique
for predicting unsteady flows about isolated airfoils. We have found that complex unsteady
flows can be modelled accurately using a small number of eigenmodes. Physically, this
is because the unsteady flow may be divided into two parts: a quasi-static portion plus a
dynamic part that represents a correction to the quasi-static part. The dynamic portion of the
unsteady flow can be further decomposed into a sum of fluid eigenmodes. However, only
those eigenmodes with eigenvalues approximately equal to or smaller than the excitation
frequency participate significantly. Hence, a very few eigenmodes must be computed. Once
the eigenmodes have been computed, the reduced order model may be used to analyze the
unsteady aerodynamic response over a wide range of frequencies and mode shapes for very
little additional computational effort. Also, the technique may be readily applied to existing
time-domain and frequency-domain analyses.

Depending on the range of frequencies of interest and the size of the aerodynamic
discretization, the eigenmode-based reduction can be a very efficient and attractive ap-
proach. This technique has a number of advantages over more conventional time-marching,
time-linearized methods, or even proper orthogonal decomposition techniques. For small
to medium size problems, the computation of the eigenmode information required for
the reduced-order model is modest, and the eigenmode reduction approach is faster than
proper orthogonal decomposition. For large problems, such as three-dimensional flows
about wings, the computation of the eigenvectors become increasingly difficult, and proper
orthogonal decomposition may be the preferred approach.

We note that the form of the reduced-order model, a low-order rational polynomial in
j ω, is ideally suited for use in the design of active control strategies. The poles of the
transfer function are the eigenvalues of the fluid system and, hence, are independent of the
mode shape of airfoil vibration. The zeros, however, will depend on both the mode shape of
airfoil vibration and the desired output force (e.g., the unsteady lift resulting from pitching
motion).

Finally, the eigenmode information itself may provide important insights into the physical
behavior of unsteady flows. For example, the authors have recently applied this technique
to viscous flow models and have been able to predict the onset of flow instabilities, e.g.,
rotating stall in cascades with fairly large regions of separations [37]. Work is underway to
extend the method to transonic flow calculations.
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